sábado, 31 de diciembre de 2011

Felicitaciones matemáticas

Desde el IES "Sierra Minera" de La Unión (Murcia) nos felicitan el Año Nuevo de una bonita y original forma. Es la tarjeta premiada en su concurso de felicitaciones matemáricas. Si quieres ver las demás, pulsa aquí.
 

jueves, 29 de diciembre de 2011

Problema de la semana: Cuestion de vista

En una clase el 40 % de los alumnos tienen mala vista. El 70 % de los que tienen mala vista llevan gafas y el 30 % restante utiliza lentes de contacto. Son 21 los alumnos de la clase que llevan gafas. ¿Cuál o cuáles de las afirmaciones siguientes son verdaderas?
      a) 45 alumnos tienen mala vista.
      b) 30 alumnos tienen buena vista.
      c) La clase tiene 100 alumnos.
      d) 10 alumnos utilizan lentes de contacto.
      e) Ninguna de las afirmaciones anteriores es verdadera.
Se reciben cometarios hasta el jueves 5 de enero a las 20:00. Entonces se harán visibles, junto a la solución.

Solución al Problema de la Semana

Ya están visibles vuestros comentarios con las respuestas al Problema de la semana: Carta de Papá Noel. La respuesta de Jorge ha llegado escaneada y es ésta:
La respuesta de Jorge es correcta, pero le ha faltado decirnos cuál es el patrón para fabricar ese gorro. Vamos con ello:
El desarrollo lateral del cono recto es un sector circular de radio g (aquí 41,05 cm). 
Para poder cortarlo, se necesita además saber cuántos grados abarca ese sector. Y eso se puede calcular mediante Regla de Tres: si a los 360º del círculo que contiene al sector le corresponde una circunferencia de 2*pi*41,05 cm, a x grados le corresponderán los 58 cm del arco que necesitamos. Resolviendo, se obtiene una apertura de 81º (aprox.).

La respuesta de Ana también es correcta, además de estar bien trabajada para presentarla a ordenador, pero al igual que a Jorge, le ha faltado explicar las dimensiones del patrón.
Lo mismo cabe decir de la respuesta de Marcos Cr.:
También Alejandro T. envía su respuesta escaneada:
En su respuesta, Alejandro T. calcula bien el radio y la generatriz, pero luego inventa una extraña fórmula en la que multiplicando centímetros por grados obtiene un área, ¡hombre...!

En los comentarios al problema veréis las respuestas de Ángela, de Mario y de nuestr@ anónim@ amig@. Están las tres bien (salvo alguna pequeña diferencia por los redondeos). Os felicito porque en vacaciones sabéis encontrar tiempo para todo. Pronto, un nuevo problema.

miércoles, 28 de diciembre de 2011

Los números: una historia seria contada en broma

Hoy, Día de los Inocentes, es día de bromas y os traigo este divertido video donde se cuenta la Historia de los Números en tono de humor. Espero que os guste.
   

martes, 27 de diciembre de 2011

Navidad matemática

Vila Real de Santo Antonio (Portugal). Foto del profesor: J. Antonio Salgueiro.
 Foto: Centro Comercial Utrillas - Zaragoza
 Foto: Pza. de Aragón (el año pasado, antes de las obras)
Palafolls. Foto de la profesora Berta Vila.
¿Sabéis decir qué conceptos matemáticos se ven en cada una de estas fotos? Espero comentarios.

lunes, 26 de diciembre de 2011

Actividades de Recuperación: Fe de erratas

En las Actividades para preparar la Recuperación he descubierto algunos errores:
Ejercicio 42: Dejádlo, es difícil y no habrá en el examen como ese. Lo podéis plantear, pero no resolver, pues aparece un sistema de dos ecuaciones con dos incógnitas, que todavía no conocéis. Precisamente los vamos a aprender a la vuelta de vacaciones.
Ejerccicio 52: Aparece una ecuación de 2º grado. Como ya las hemos trabajado en clase, podéis resolverlo. Pero esas ecuaciones quedarán fuera en el Examen de Recuperación.
Ejercicio 62: Donde dice "triángulo rectángulo", debe decir "triángulo equilátero".
  
Disculpad estos errores, pero preparar 75 ejercicios lleva ese riesgo. ¡Todos nos equivocamos!

No sólo Mates: una felicitación especial

Nos llega desde el IES "Pío Baroja" de Madrid:
      

sábado, 24 de diciembre de 2011

No sólo Mates: regalo de Navidad

He conocido este video y como me parece una maravilla os lo ofrezco como mi particular regalo de Navidad. En estos días de buenos deseos, a vosotros, que estáis despertando a tantas cosas, os deseo que nunca perdáis la capacidad de sorpresa, la curiosidad por saber más, ni la ilusión por resolver algunos de los muchos problemas (matemáticos y no matemáticos) que la vida os presentará. Si lo conseguís, con ello, a veces también seréis felices.
      

jueves, 22 de diciembre de 2011

Problema de la semana: Carta de Papá Noel

Carta de Papá Noel:
Queridos chicos y chicas, aquí en la Laponia finlandesa estamos preparando vuestros regalos de Navidad porque ya falta muy poco para que llegue la Noche Buena.
Tanto los elfos como yo, tenemos muchísimo trabajo por lo que os agradeceríamos enormemente que nos ayudarais con este asunto ¡He perdido todos mis gorros! y ahora tenemos que confeccionar un gorro nuevo para estas navidades ¿podríais ayudarnos?
Necesito saber cuánta tela roja voy a necesitar y también necesito el patrón. Los únicos datos que tengo son esta foto y deciros que el perímetro de mi cabeza es 58 cm.
Si dais con la solución, enviad vuestras respuestas al blog y vuestro profesor me las mandará todas juntas. 
Desde el Círculo Polar Ártico, en Rovaniemi (Finlandia), muchísimas gracias por vuestra ayuda y ¡FELIZ NAVIDAD A TODOS!
(foto y problema de la profesora Emilia Menéndez Morís) 
Se reciben comentarios hasta el jueves 29 de diciembre a las 20:00. Entonces se harán visibles junto a la solución.

Solución al Problema de la semana

Aquí os muestro una forma rápida de llegar a la solución:
Comento vuestras respuestas: En primer lugar, hay que decir que son más elaboradas que de costumbre y os felicito por ello.
Jorge, Ángela, Mario y Ana responden correctamente: entre 98 y 99 metros cuadrados (los decimales varían según los redondeos realizados durante el proceso). Todos ellos han seguido un camino diferente al que antes os he explicado: han considerado el número de vueltas que da el papel, 300. Luego, han calculado las superficies del papel en cada vuelta, viendo que están en progresión aritmética, debido a que el radio se va reduciendo 0,01 cm por vuelta (hay algunas diferencias en el tratamiento de la progresión, pero todas son correctas).
Alejandro T. ha cometido dos errores: ha confundido y cruzado las fórmulas del área del círculo y de la longitud de la circunferencia; además, no ha considerado que esa reducción progresiva del radio da lugar a la progresión de áreas, sino que ha tomado las áreas de cada vuelta como si fueran iguales entre sí. El resto de su razonamiento es bueno.
Pronto, un nuevo problema.

La felicitación de Alejandro T.

Hola, aqui te traigo la que esperemos sea la última foto del año. Es una colonia cuyo logotipo es el símbolo de pi. Feliz Navidad y un recuerdo para todos; y, prospero año nuevo 2012. :)

martes, 20 de diciembre de 2011

¡Feliz Navidad!

Nos la felicitan con música los compañeros del IES Baelo Claudia de Tarifa (Cádiz):
   

lunes, 19 de diciembre de 2011

Diario de clase

Escrito por el Profesor:
He revisado el trabajo en casa de varios de vosotros, como hago cada día. Luego, hemos corregido las ecuaciones de segundo grado completas que teniáis que haber resuelto en casa y os he explicado las incompletas con algunos ejemplos. Deberes para casa: página 11... nº 2; página 114 ... nº 10.
Además, he encomendado a cada uno una tarea para vacaciones, según cuál sea su situación:
* Si suspendió la 1ª Evaluación: colección de 75 ejercicios con los que preparar la Recuperación. En otro artículo de hoy mismo en este blog lo explico con más detalle.
* Si aprobó la 1ª Evaluación pero había suspendido dos exámenes: debe hacer los mismos ejercicios que los que han de recuperar, pero sólo de esas dos partes y sin otra obligación que entregarlos el día 16 de enero (no hay examen). 
Si aprobó la 1ª Evaluación pero había suspendido un examen: debe hacer los mismos ejercicios que los que han de recuperar, pero sólo de esa parte y sin otra obligación que entregarlos el día 16 de enero (no hay examen).Y además, un trabajo.
Si aprobó la 1ª Evaluación sin suspender exámenes: 2 trabajos.
Hoy escribo yo el diario porque me importa expresar claramente cuál es la tarea encomendada a cada uno en vacaciones, para que vuestros padres estén informados.

Para recuperar la Primera Evaluación

Quienes tenéis que recuperar la Primera Evaluación habéis recibido esta mañana unas hojas de problemas con las que trabajar para conseguir el objetivo de recuperarla en Enero. Para que nadie tenga la excusa de decir que las ha perdido, las hojas se pueden descargar pulsando aquí.
El Plan de Recuperación consiste en:
  Realizar esos ejercicios hasta la vuelta de las Vacaciones de Navidad.
El lunes 9 de enero os entregaré una hoja con las respuestas (no desarrolladas) para que hagáis una autoevaluación de vuestro trabajo y repaséis aquellos ejercicios que no estén bien resueltos.
A lo largo de esa semana estaré a vuestra disposición en el Departamento de Matemáticas para atender a las dudas que tengáis en esos ejercicios.
El lunes 16 de enero será el Examen de Recuperación, con preguntas similares a las de las hojas, y deberéis presentar la colección de ejercicios trabajados (esto último es condición necesaria, pero no suciente para aprobar).
Falta casi un mes. Si te organizas y sigues el Plan propuesto, llegarás al Examen de Recuperación con confianza y lo aprobarás.
Cuenta conmigo. Tienes mi dirección e-mail (en vacaciones) y me tienes en persona en el instituto después. ¡Estoy para ayudarte, pero nadie puede trabajar y aprender por tí, sino tú mismo!
El Profesor

domingo, 18 de diciembre de 2011

Más cálculo mental cantado

Recordad: el reto es saber la respuesta en el tiempo que dura la canción...
    

viernes, 16 de diciembre de 2011

Diario de clase

Escrito por el Profesor:
A la espera de que nos llegue el diario de César, os recuerdo los deberes: revisar y completar todas las ecuaciones de la pág. 109, nº 1; y resolver las de la pág. 110, nº 1.

Fallos en Ecuaciones de Segundo Grado

Hoy habéis conocido la fórmula para la resolución de las Ecuaciones de Segundo Grado Completas. este nuevo video de los colegas del IES "Baelo Claudia" de Tarifa (Cádiz) os ayudará a prevenir algunos errores frecuentes:
   

jueves, 15 de diciembre de 2011

Problema de la semana: Papel para una revista

Para imprimir una revista se han utilizado bobinas de papel que tienen un diámetro de 10 cm, conteniendo en su interior un tubo de 4 cm de diámetro. Sabiendo que la altura de cada una de ellas es de 1,5 metros y que el grosor del papel es de 0,1 mm, calcular aproximadamente los metros cuadrados de papel que contiene cada bobina.
Se reciben comentarios hasta el jueves 22 de diciembre a las 22:00. Entonces se harán visibles, junto a la solución correcta.

Solución al Problema de la semana: camino del instituto

Algunas soluciones han llegado como comentarios. Las podéis ver, junto con el enunciado, pulsando aquí.
También han llegado dos soluciones escaneadas. Una es de Manuel:
La otra es de Ana:
La solución correcta son 5 km. Además de Manuel y Ana, han llegado a ella, como podéis ver en los comentarios, Mario, Jorge y Antonio. Unos y otros siguen caminos variados, pero no muy diferentes: todos usan el Álgebra y sus ecuaciones se basan en la conocida de "espacio = velocidad x tiempo".

Quiero destacar un detalle: tanto Manuel como Antonio llegan a la solución correcta pese a cometer un error. En la ecuación mezclan una velocidad en km/h con un tiempo en minutos. Las unidades que se usan deben ser homogéneas: todo en minutos, en este caso. Pero como el paso de las dos velocidades (4 km/h y 5 km/h)  a km/min. supone dividir por 60 en ambos miembros de la ecuación, el olvidarlo no repercute en la solución, pues equivale a simplificar denominadores en ambos miembros. A veces los errores son enmendados sin que nos demos cuenta.... :)

Han llegado otras respuestas erróneas que proponen 5,5 km y 7 km.
Felicito a todos por el intento.

Enseguida, un nuevo problema.

miércoles, 14 de diciembre de 2011

Fallos en Ecuaciones de Primer Grado

En la última clase hemos repasado la resolución de Ecuaciones de Primer Grado. Cuando aparecen denominadores se pueden seguir dos métodos: 1) multiplicar los dos miembros de la ecuación por el m.c.m. de los denominadores; o bien 2) reducir todo a común de nominador. Yo insistí en el primer método porque me parece más rápido, pero muchos recordábais el segundo método y parece que lo preferís. Pues bien, he encontrado este simpático video producido por los estudiantes del IES "Baelo Claudia" de Tarifa (Cádiz), en el que nos previenen de los errores más frecuentes en esos casos:
     

martes, 13 de diciembre de 2011

Diario de clase

Escrito por Nerea:
Hoy hemos empezado corrigiendo los ejercicios mandados para casa del día anterior, después el profesor nos ha explicado las ecuaciones de primer grado clasificándolas en compatibles, anómalas, equivalentes y transformaciones que mantienen la equivalencia. Más tarde nos ha dado los pasos para resolver una ecuación que son: quitando los denominadores, quitando paréntesis, utilizando la transposición de términos, reduciendo los términos semejantes y despejando la x (si se quiere al final, se comprueba). Hemos acabado la clase empezando a hacer el ejercicio 1 de la página 109, que como no hemos acabado, ha mandado para casa.

Una fecha en progresión aritmética

Hoy es....   13 - 12 - 11

lunes, 12 de diciembre de 2011

Diario de clase

Hola, soy David M.
Hoy en clase de desdoble el profesor nos ha dado el examen corregido de Expresiones Algebraicas (tema 4), luego ha escrito en la pizarra los resultados de los ejercicios del examen por si teníamos dudas o había algún error en la corrección del examen y nos ha dicho la nota media de la evaluación.
El profesor ha hablado de Al-Khwarizmi, que la obra que le inmortalizó fue el "Kitab al-jabr wa al-mugabalh", que de la pronunciación de ese título, que nos resulta tan complicada, proviene la palabra "álgebra" y que para Al-Kwarizmi, lo que nosotros llamaremos la incógnita, aquel valor que desconocemos y queremos conocer, recibía el nombre de "la cosa". Se puede traducir el Álgebra como "el arte de la cosa".
Luego hemos empezado tema nuevo, el tema 5 Ecuaciones, ha dictado el significado de ecuación y de identidad, después hemos hecho oralmente el ejercicio 5 de la página 106 y ha mandado los siguientes deberes para casa: página 114, el 1, 4 y 5.

Notas de la Evaluación

Éste es el resumen de la notas de la Primera Evaluación:
Notas:     de 1 a 3        4        5       6       7      8      9     10
Alumnos:       4            5        7       8       4      0      1      0  
   
media = 5.1           suspensos: 31%                                                         
    
Las notas individuales las conoceréis cuando recibáis el boletín.
La mejora del último tramo de esta evaluación ha servido a bastantes para aprobar (recordad los malos resultados del comienzo). A otros, todavía no, pero están en el esfuerzo y siendo constantes lo conseguirán. En ese camino contad siempre conmigo.
A los pocos que siguen "fuera" de la asignatura, sólo les digo que vean lo que en poco tiempo han conseguido sus compañeros: si unos han podido, ellos también pueden.

El Álgebra

El Álgebra es una de las partes más importantes de las Matemáticas. Sabed que su iniciador fue Al-Khwarizmi (750 - 850) -en el dibujo-. Su nombre completo era Muhammad ibn Musa Al-Kwarizmi. Vivió en Baghdad (capital del actual Irak) en una época floreciente para las artes y las ciencias en la que el Califa Al-Mammun fundó la Casa de la Sabiduría, centro cultural que recogió los saberes griegos, hindúes y babilonios. La obra que le inmortalizó fue el "Kitab al-jabr wa al-mugabalh" ("Ciencia de la trasposición y la reducción de términos"). De la pronunciación de ese título, que nos resulta tan complicada, proviene la palabra "álgebra".
Para Al-Kwarizmi, lo que nosotros llamaremos la incógnita, aquel valor que desconocemos y queremos conocer, recibía el nombre de "la cosa". Se puede traducir el Álgebra como "el arte de la cosa".
También es curioso saber que si el Álgebra se desarrolló en el mundo árabe fue en buena parte motivado por la necesidad que tenían de resolver los complicados problemas de herencias que se planteaban en una sociedad polígama (un hombre podía tener varias esposas) cuando a la muerte de aquel había que repartir su herencia entre éstas y sus hijos, siguiendo los preceptos de El Corán, el libro sagrado de su religión. Pero las ecuaciones han resultado útiles para resolver problemas de muchos otros tipos, en cualquier tiempo y sociedad.

sábado, 10 de diciembre de 2011

Esto cambia... ¡así, sí!

Otro sábado de corregir... y éstos son los resultados del grupo en el Examen de Expresiones Algebraicas (tema 4):
Notas:     de 0 a 3     de 3 a 4     de 4 a 5     Suficiente     Bien     Notable     Sobresaliente
Alumnos:      2                 3               4               5              4            8                  3  
   
media = 6.4 (sube 2,3 puntos)            suspensos: 24,1% (baja un 28%)
    
Las notas individuales las conoceréis el lunes en clase y ese mismo día vuestros padres las podrán consultar en el Sistema de Gestión Docente (SGD).

La mejora es grande. Tal vez este tema y su examen os hayan resultado más fáciles, pero estoy convencido de que, además, muchos habéis reaccionado al daros cuenta del mal rumbo que tomaba el curso. Os felicito por ello. 

viernes, 9 de diciembre de 2011

Diario de clase

Escrito por el Profesor:
Hoy ha sido el Examen de Expresiones Algebraicas, último de la Primera Evaluación. El lunes lo tendréis corregido. En este enlace podéis ver las preguntas.

jueves, 8 de diciembre de 2011

Problema de la semana: camino del instituto.

Siempre salgo de casa, camino del instituto, a la misma hora. Cuando voy caminando a 4 km/h llego 5 minutos tarde, pero cuando voy a 5 km/h llego 10 minutos antes de la hora de entrada. ¿A qué distancia está el instituto de mi casa?
Se reciben comentarios hasta el jueves 15 de diciembre a las 22:00. Entonces se harán visibles, junto a la solución.

Solución al Problema de la semana: el pago

Han llegado varias respuestas como comentarios, que puedes revisar aquí.
      
La respuesta de Ana viene con un esquema y es ésta:
1º Día- le da una pieza que vale un denario y le devuelve 0.
2º Día - le da otra pieza que vale 2 denarios y le devuelve 1. Con ese denario paga el 3º día.
4º Día- le da una pieza que vale 4 denarios y le devuelve 3. Paga hasta el 7º día.
8º Día- le da una pieza que vale 8 denarios y le devuelve 7. Paga hasta el 15º día.
16º Día-  le da la última pieza que vale 15 denarios y le devuelve 14. Pagas así hasta el 30º día.
La respuesta es correcta, pero ha incorporado un detalle que no se decía en el enunciado del problema: en la solución de Ana, el posadero devuelve al viajero cada vez denarios, que éste usa para ir pagando los días siguientes.
    
Es posible también llegar a la misma solución si el posadero le va devolviendo con las mismas piezas de plata. De esta forma:
Una de las piezas ha de ser de 1 denario, con la que se pagaría el primer día.
Para pagar el segundo día usaríamos otra pieza de 2 denarios y nos devolvería la de 1 denario, con la que pagaríamos el tercer día, y la posadera tendría 3 denarios.
El cuarto día pagamos con una pieza de 4 denarios y devuelve las dos de 1 y 2 denarios. Seguiríamos pagando con la de 1, después la de 2 y devuelven 1, y así sucesivamente.
El octavo día pagaríamos con una de 8 denarios y nos devuelven las de 1, 2 y 4. Así podría pagar hasta el día 15.
El día 16 paga con una de 15 y le devuelven las de 2, 4 y 8, y así sucesivamente.
En resumen, las piezas deben ser de 1, 2, 4, 8 y 15 denarios.

Las otras respuestas recibidas también suponen que el posadero devuelve denarios, con lo cual son posibles otras soluciones diferentes. Todos los demás habéis optado por suponer que todas las piezas de plata valen lo mismo (algo que no dice el problema) e incluso Marcos dice que son monedas. De esa forma el problema pierde mucho su interés pues se convierte en ir pagando con monedas sin más.
En realidad el problema está pensado para explorar el camino que os he detallado, en el que no aparece ninguna moneda sino que todos los trueques se hacen con las piezas de plata. Pero tal vez el enunciado, aunque dice "con esas piezas",  no deja suficientemente claro el tema del cambio.
   
Pronto, un nuevo problema. 

martes, 6 de diciembre de 2011

Repasa las Expresiones Algebraicas

Para empezar cada una de las siguientes aplicaciones, pulsa con el ratón sobre el dibujo. Luego, selecciona opciones y avanza con las flechas.
Autores: Antonio Fco. Devesa, Carmen Gutiérrez, Fernando López y Rosa Fargueta. Recursos de la Junta de Extremadura
En la segunda aplicación hay una parte de división de polinomios que este año no estudiamos (esa, para el año que viene).

domingo, 4 de diciembre de 2011

Nota del trabajo diario: vamos mejorando

Ya tengo vuestras notas de valoración del trabajo diario que, como sabéis, son el 20% de la nota de la Evaluación. Los resultados son sensiblemente mejores que en los exámenes: 
Notas:     de 0 a 3     de 3 a 4     de 4 a 5     Suficiente     Bien     Notable     Sobresaliente
Alumnos:      1                3               2               3              4          10                  6  
   
media = 6,4                 suspensos: 24,1%
    
Las notas individuales se conocerán el miércoles en el Sistema de Gestión Docente (SGD).
Os van a ayudar a subir la media... pero recordad: para ello es imprescindible que la media de exámenes sea superior a 4 puntos (y luego la media total mayor o igual que 5, claro está). Ánimo, el examen del viernes debe ser para muchos el empujón final hacia el aprobado.

sábado, 3 de diciembre de 2011

Cálculo mental con música

Recientemente, en el concurso de TV "Mucho que perder, poco que ganar", que ha pasado fugazmente por las pantallas pues enseguida desapareció de la programación, se planteaban a los concursantes pruebas de cálculo mental cantadas por cantantes famosillos. Es algo divertido y por eso os lo traigo. Hay para todos los gustos: canción "lolailo", electro-latina, rapera... ¿Sois capaces de responder a cada prueba en cuanto termina la canción?
    



Ya me diréis si os gustan... ¡hay más!

viernes, 2 de diciembre de 2011

Problema de la semana: El pago

Un viajero se alojó en una posada de la Caesaraugusta romana durante 30 días, por el precio de un denario cada día. El viajero no tenía dinero, pero tenía 5 piezas de plata que, entre todas, valían 30 denarios. Cada día, con esas piezas le pagaba al posadero y éste le devolvía el cambio, sin que ninguno de los dos le quedase debiendo nada al otro. ¿Puedes decir cuánto valía cada una de las 5 piezas de plata y cómo se hicieron los pagos?
Monedas de Caesaraugusta (Museo de Zaragoza)... las que no tenía el viajero del problema
Se reciben comentarios hasta el jueves 8 de diciembre a las 22:00. entonces se harán visibles, junto a la respuesta correcta.

Diario de clase

Escrito por el Profesor:
Hoy ha sido la clase previa al Examen de Expresiones Algebraicas, que haréis el próximo viernes, así que la hemos dedicado toda ella a repasar y corregir ejercicios. Me ha sorprendido descubrir cuántos de vosotros todavía no han memorizado las tres identidades notables, que ya debíais saber del curso pasado y que son muy importantes. En cuanto a la revisión diaria de cuadernos, parece que va dando frutos y ya son pocos los que llegan a clase sin la tarea diaria trabajada. Una de cal y otra de arena...

jueves, 1 de diciembre de 2011

Solución al Problema de la semana: la vaca

Ya están visibles vuestras respuestas enviadas como comentarios (para verlas, pulsar sobre este enlace).
En otros casos, las habéis enviado escaneadas, dado que incluían el gráfico. Son las de Ángela, Jorge, Mario y Alejandro P. Las cuatro están bien, así que nada tengo que explicar. En ellas podéis ver la solución:
Mañana, otro problema.

miércoles, 30 de noviembre de 2011

martes, 29 de noviembre de 2011

Demostración visual de las identidades notables

Si pulsas el ratón sobre cada uno de los siguientes dibujos, podrás repasar las demostraciones visuales que hoy os he explicado en clase. Siguelas instrucciones en la parte inferior de cada pantalla y avanza las diapositivas con las flechas. Al final, puedes cambiar los datos moviendo los deslizadores ("puntos gordos" en una escala).
Cuadrado de una suma:
Cuadrado de una diferencia:
Suma por diferencia:
Autor: Manuel Sada Allo

Diario de clase

Hola soy Alejandro P.
Hoy en clase hemos corregido los ejercicios que mandó en clase (no los del libro). Después de corregirlos el profesor nos enseñó una pagina para aprender a hacer las identidades notables, la página de internet se llama Geogebra. Primero nos ha explicado el cuadrado de una suma, luego el cuadrado de la diferencia y por último la suma por diferencia. También hemos hecho los ejercicios 92 (1-2) y de la página 93 (3). Nos ha mandado ejercicios de la página 93 (4) y de la página 100 (18, 19, 20, 28, 29).

lunes, 28 de noviembre de 2011

Diario de clase

Soy Diego
Hoy en clase el profesor nos ha recordado que el ultimo día para presentarse al Canguro Matemático es mañana por si alguien quiere apuntarse. Después de esto nos ha estado contando unas cuantas cosas sobre el blog y nuestro amigo anónimo. Como todos los lunes hemos empezado la clase por la explicación que hoy se trataba sobre el factor común en (las sumas de) los monomios, después de hacer unos ejemplos hemos corregido los ejercicios del día anterior. De deberes nos ha mandado de la pagina 91 el ejercicio 6, de la pagina 99 el ejercicio 15 y ha puesto unos polinomios en la pizarra. Por si alguno no se los ha apuntado, son los siguientes: A=x^2+2x-3   B=-3x^2-x+5   C=2x+3 y con estos polinomios tenemos que calcular A por B, B por C y A por C.

domingo, 27 de noviembre de 2011

Enredados con los números

Volvemos con cuestiones numéricas, pero hoy en tono de humor. ¿Recordáis que estudiábamos las ofertas comerciales con los porcentajes? En este video unos no andan finos con ello... y hay quien lo aprovecha.


Anque los líos con los números vienen de muy lejos, de siglos atrás. Mirad si no...


Por todas partes hay "listos" que se benfician de la torpeza numérica de los demás. Confío que no seáis ni de unos ni de otros.

viernes, 25 de noviembre de 2011

Más ejercicios: polinomios

Hoja 2: suma y resta de polinomios

Hoja 3: producto de polinomios

La próxima semana, las soluciones.
 Hojas: Ed. Anaya, enlazadas en la web del IES de Pravia (Asturias)

Diario de clase

Hola, soy PABLO.
Hoy en clase, como es habitual todos los viernes, hemos empezado corrigiendo el problema de la semana, en el que la respuesta era Adrián.Después, hemos corregido los ejercicios del último día que mandó.
De teoría, hemos hablado de los polinomios y luego, de deberes, nos ha mandado de la página 90 el 1, 2, 3 y de la página 98 el 12, 13, 14.

jueves, 24 de noviembre de 2011

Problema de la semana: La vaca

En medio de un prado hay un recinto rectangular de dimensiones 3 m x 5 m. Una vaca está atada por una de sus patas anteriores a una de las esquinas exteriores de ese recinto con una cuerda de 6 m. ¿Cuánto mide el área en la que puede pastar la vaca?
Se reciben comentarios hasta el jueves 1 de diciembre a las 22:00. Entonces se harán visibles, junto a la solución.
Ya están visibles los comentarios y solución al Problema de la semana: El cristal roto.
Ha habido 11 respuestas (esto va funcionando mejor...). La respuesta de Jorge me llegó por escrito y la podéis ver pulsando aquí.
Todos estáis de acuerdo y acertáis: ha sido Adrián.
A continuación podéis ver la solución explicada de la forma más breve posible: mediante una tabla.
De modo que el único caso en el que hay dos que mienten (M) y tres que dicen la verdad (V) es si ha sido Adrián. Por cierto, os presento a Adrián...
Pronto, un nuevo problema.

martes, 22 de noviembre de 2011

Más ejercicios: monomios

Siguiendo la sugerencia de Nerea, iré colgando en el bog hojas de ejercicios para quienes, ahora o en vísperas del examen, quieran hacer más ejercicios de los que trae el libro y vamos corrigiendo en clase. Ésta es la primera hoja que ya podéis descargar (pulsar con el ratón encima): Hoja 1.- Monomios
Seguiré colgando más hojas conforme avancemos en el tema. En los días previos al examen pondré las soluciones. Quede claro que lo que os exijo traer trabajado a clase son los ejercicios indicados cada día, de los cuales deja constancia el "Diario de clase". Éstos otros son optativos, para facilitar el trabajo de quien crea que necesita practicar más. 
Y quede claro que ... ¡un "monomio" no es esto!

Diario de clase

Escrito por Claudia:
Hoy en clase, nada más llegar, el profesor nos ha devuelto las hojas voluntarias que nos dio el día del examen. El profesor ha pasado a mirar los ejercicios que había que hacer para hoy y ha explicado los Monomios. En la pizarra hemos hecho los ejercicios 2 y 3 de la pág. 89.
Al final de la clase ha mandado, para el Viernes, estos ejercicios: Pág.89/ Ejercicio 4 - Pág. 98/ Ejercicios desde el 7 hasta el 11.

lunes, 21 de noviembre de 2011

Expresiones algebraicas con Troncho y Poncho

He encontrado en Youtube este curioso video sobre las Expresiones algebraicas como lenguaje para expresar las situaciones. Es un poco "especial", pero ahí va para que lo veais tras hacer los problemas de hoy que tratan sobre esto mismo... aunque sin abuelitos desdentados (¡qué crueles!).
Autores: Ángel y José Luis González
De la web cuyo enlace nos envía Nerea en su comentario, os pongo este otro video sobre "Clasificación de expresiones algebraicas". No es gran cosa, pero también sirve para repasar.

Diario de clase

Hola soy David S:
Al empezar la clase el profesor nos ha entregado los examenes, los hemos corregido, ha explicado todos los ejercicios del examen y ha resuelto las dudas que teníamos. Después hemos comenzado el Tema 4 " El lenguaje algebraico"y nos ha dictado la definición del lenguaje algebraico, después nos ha dado una ficha en la cual teníamos que decir cómo nos había parecido el examen y cómo nos había salido el examen. Al final hemos hecho en clase los ejercicios de la página 88 el nº 1, y de la página 98 nº1. De deberes ha mandado los ejercicios de la página 99 del 2 al 6 y de la página 100 el nº 29.

Escrito por el Profesor:
También he recogido la hoja de problemas voluntarios para el fin de semana. De los 29 alumnos, la han entregado 20. Servirá para subir la nota del examen hasta +0,6 puntos (a 0,1 por cuestión planteada). Eso, sumado a los extras por aportaciones al blog empieza a ser una refuerzo de nota estimable para quienes demostrais interés.

Encuesta tras el último examen

Habéis respondido a la encuesta los 28 alumnos presentes en clase. Gracias por vuestra participación y sinceridad. Éstos son los resultados:
   
1.   En el reciente examen: 
                   He sacado peor nota de la que esperaba... 19
                   He sacado la nota que esperaba... 5
                   He sacado mejor nota de la que esperaba...4
    
2. En caso de que hayas sacado mala nota o peor de la que esperabas, se ha debido,sobre todo, a que:
                   Los temas a examen eran difíciles... 5
                   El profesor no los ha explicado bien... 1
                   El examen que puso el profesor era más difícil que lo trabajado en clase... 9
                   He trabajado poco la asignatura... 6
                   El profesor lo ha corregido de forma exigente... 1

En comparación con la anterior encuesta (tras el primer examen), parece que los resultados, aún siendo mayoritariamente peores que los esperados, se acercan un poco más a esa previsión personal.
En cuanto a las razones de los malos resultados, ahora cobra fuerza la dificultad, tanto del tema como del examen. Respecto a la dificultad del tema, sólo puedo deciros que está en el programa de 3º ESO y que no he añadido nada... es lo que os toca. Sobre la dificultad del examen, nuevamente os diré que cuando lo puse tenía delante el libro para que cada pregunta fuera similar a alguna que habíamos trabajado en clase. 
Insisto en que la nota del trabajo diario saldrá de las revisiones diarias de vuestro cuaderno, así que debéis trabajar cada día.

sábado, 19 de noviembre de 2011

Segundo examen: seguimos mal.

Hoy, sábado, he dedicado la tarde a corregir vuestro último examen (tema 3). Éstos son los resultados del grupo:
Notas:     de 0 a 3     de 3 a 4     de 4 a 5     Suficiente     Bien     Notable     Sobresaliente
Alumnos:      10               3               4               6              3            2                  1   
   
media = 4,1 (empeora)            suspensos: 62,1% (se mantiene)
    
Las notas individuales las conoceréis el lunes en clase y ese mismo día vuestros padres las podrán consultar en el Sistema de Gestión Docente (SGD).
Seguimos con malos resultados, a pesar del aparente despertar de algunos... pero no de la mayoría. El tema de "Sucesiones y progresiones" era nuevo para vosotros y eso explica que algunos de quienes suspendieron el primer examen con notas alrededor de 4, gracias entonces a ser repaso de contenidos de cursos anteriores, ahora, sin poder "vivir de las rentas", hayan suspendido estrepitosamente. En ese sentido, os anuncio que el próximo tema "Expresiones polinómicas" es el más breve y todo él es repaso de 2º ESO, sin contenidos nuevos, aunque, claro está, los ejercicios serán algo más complicados que el curso pasado. Por todo ello, el próximo tema os ofrece una buena oportunidad para subir el promedio de las notas de exámenes. Su examen es el viernes 9 de diciembre, en vísperas de la Primera Evaluación.
Seguiré revisando vuestro trabajo a diario y poniendo comentarios a los padres en el SGD para que estén informados si, como coloquialmente se dice, "no dáis un palo al agua".
La cosa va en serio. Hay que "ponerse las pilas". Estáis a tiempo, pero no lo dejéis para más adelante: tal vez el día en que queráis reaccionar sea tarde.
Sigue siendo válido y os repito el mismo lema que tras el primer examen:

viernes, 18 de noviembre de 2011

Diario de clase

Escrito por el Profesor:
Habéis realizado el Examen del Tema 2: Progresiones. Podéis ver las preguntas y soluciones en este enlace.
A la espera de conocer los resultados, debo deciros que advierto en algunos de vosotros una reacción positiva tras los malos resultados del primer examen. Eso es lo fundamental pues, aunque las notas de este segundo examen tampoco fueran buenas, esa actitud es la base para remontarlas. Sin ganas, nada es posible.
Al terminar la clase, os he repartido esta hoja con dos problemas voluntarios. Quien los trabaje, que me los entregue el lunes.

jueves, 17 de noviembre de 2011

Problema de la semana: El cristal roto

En una familia de cinco hermanos uno de ellos ha roto un cristal. Diego dice: “Ha sido Enrique o Adrián”. Enrique dice: “No hemos sido ni Carlos ni yo”. Adrián dice: “Los dos están mintiendo”. Luis dice: “No, uno está diciendo la verdad, pero otro no”. Carlos dice: “No Luis, eso no es verdad”. El padre, que es sincero, dice que tres de sus hijos siempre dicen la verdad, pero que los otros dos mienten. ¿Quién rompió el cristal?
 Se reciben comentarios hasta el jueves 24 de noviembre a las 22:00. Entonces se harán visibles junto a la solución dle problema.

Respuesta y solución al problema de la semana: un cuadrado especial

El problema de la semana (Un cuadrado especial) era muy accesible y hemos batido el récord de respuestas... ¡17! (las podéis ver en los comentarios al problema; salvo la respuesta de Iván que al ser más extensa la ha entregado por escrito y se puede ver a continuación). Pero no todos los que responden han sabido explicar su búsqueda con igual detalle.

miércoles, 16 de noviembre de 2011

Enlaces para repasar sobre progresiones

Dados dos términos de una progresión aritmética, calcular la diferencia y cualquier término: en este enlace

Dados dos términos de una progresión geométrica, calcular la razón y cualquier término: en este enlace

Suma de todos los términos de una progresión geométrica: en este enlace

Repaso del tema completo: en este enlace

martes, 15 de noviembre de 2011

Diario de clase

Hola, soy Jorge de 3º C
Hoy no más (nada más) empezar la clase el profesor ha ido pasando por las mesas a ver si habíamos hecho todos los ejercicios. Después hemos corregido los deberes que mandó el día anterior; no más corregirlos hemos hecho un problema de la página 80 el 28 y seguidamente ha dicho que pondría las soluciones de los problemas de la página 80-81 del 23 al 33. No nos ha mandado ningún deber para que podamos repasar para el examen. HASTA MAÑANA…
Escrito por el Profesor: Sí que hay deberes... los problemas 23 al 33.

Autoevaluación de los problemas con progresiones

El viernes es el Examen del tema "Progresiones"y para repasarlo os he indicado que hagáis problemas de las páginas 80 y 81: nº 23 al 33 (excepto los ya corregidos). Como no tenemos clase antes, para que podías comprobar vuestras respuestas, aquí os dejo las soluciones:
nº 23.- 13 días
nº 24.- a) 1758   b) 2062
nº 26.- Al cabo de 4 años: 3.646,50 €. Después de 8 años: 4.432,40 €.
nº 27.- 8.388.608 bacterias
nº 29.- 10.440 €
nº 30.- 58 m
nº 31.- 4.950 bloques
nº 32.- 1.025 €; 1.050,63 €; 1.076,89 €; 1.103,81 €; 1.131,41 €; 1.159,69 €
nº 33.- 14.284 €

lunes, 14 de noviembre de 2011

Interés compuesto en Futurama

¿Es correcto el cálculo de la cajera? Espero vuestros comentarios.

Diario de clase

Hola a todos soy Mario.
Hoy, al comenzar la clase el profesor ha revisado los deberes para ver si los habíamos hecho, después hemos salido a la pizarra para explicar el problema de la semana del trapecio, más tarde el profesor nos ha explicado el interés compuesto, hemos corregido los ejercicios y luego ha mandado deberes para casa que son: de la página 79 el 1 y 2 y de la página 80 20,21 y 22

sábado, 12 de noviembre de 2011

No sólo Mates: sorpresa en el parque del Agua

Este blog trata fundamentalmente de matemáticas en 3º ESO, pero también puede ser un medio de comunicación entre personas que compartimos un tiempo y un lugar. Por eso, a raíz del envío de mensajes no matemáticos por parte de algunos alumnos, el curso pasado abrimos en el blog la sección "No sólo Mates". En ella podéis publicar y expresar todo aquello que consideréis puede interesar a vuestros compañeros y que tenga fundamento. La empiezo yo con una imagen soprendente que se puede disfrutar estos días en vuestro barrio, en el Parque del Agua.
Un rebaño de ovejas pasta en las praderas que van de las "Playas" al río, haciendo su mantenimiento ecológico (limpieza y abono). Tras ellas, sigue un nutrido grupo de garcillas blancas, llamadas garcillas bueyeras (éstas en realida son "ovejeras"). Están allí porque, a su paso, el rebaño remueve la tierra, dejando al descubierto las lombrices y otros insectos que son su principal alimento. Pero de vez en cuando, en medio de su banquete, alguna garcilla se posa sobre el lomo de una oveja, dejándose llevar por ella. Las ovejas, acostumbradas, no se inmutan.

viernes, 11 de noviembre de 2011

Diario de clase

Hola soy Alejandro .T:
Hoy lo primero ha sido que el profesro ha mirado los ejercicios para ver si los habíamos hecho; después los hemos corregido en la pizarra añadiendo la respuesta al problema de la semana. Enhorabuena esta semana ha habido 7 respuestas ¡¡¡récord!!!. Cuando hemos terminado nos ha explicado con una fórmula y dos folios cómo era posible sumar en una progresión geométrica los infinitos números cuando la razón es menor de 1 (en valor absoluto). Y para terminar ha mandado de deberes de la pág.77/10.11.12 y de la pág.80/19.25. Eso es todo ¡¡¡Buen fin de semana!!!

jueves, 10 de noviembre de 2011

Problema de la semana: Un cuadrado especial

Soy un número de cuatro cifras, todas diferentes de cero.
Soy un cuadrado perfecto.
El número que forman mis dos primeras cifras es también un cuadrado perfecto, lo mismo que el número formado por mis dos últimas cifras.
¿Quién soy?
Explica claramente cómo obtienes la respuesta.
Se reciben comentarios hasta el jueves 17 de noviembre a las 22:00. Entonces se harán visibles junto a la respuesta correcta.

Respuestas al problema de la semana: trapecio

Dada la cantidad (¡qué bien!) y extensión de las respuestas recibidas, se incluyen en imágenes reducidas. Para poder leerlas, haz "click" con el ratón sobre cada una de ellas.
Ésta es la respuesta que envía Ana:
Ésta, la de Marcos:
Ésta la que envía Ángela:
Jorge responde así:
Mario envía esta respuesta:
Antonio dice:
Para averiguar el área del trapecio había que averiguar la altura de este, y las diagonales del trapecio formaban 4 triángulos, había que averiguar la medida de los catetos de 2 de los triángulos (los del centro), y al sumarla te daba la altura del trapecio.
Después tenías que sumar la medida de las 2 bases
(12+20=32), dividirlo para 2 (16) y multiplicarlo por la altura (16x16=276)
Resultado: el área es de 276 cm.

Y por último, la respuesta de Manuel:
Como las diagonales son perpendiculares forman ángulos de 90 grados lo cual de puede hacer el teorema de pitágoras
x es la arista de un triángulo formado por la base menor y las dos diagonales entonces, x al cuadrado+ x al cuadrado= 12 al cuadrado lo cual x es la raíz cuadrada de 72
y es la arista de un triángulo formado por la base mayor y las dos diagonales entonces, y al cuadrado+ y al cuadrado=20 al cuadrado lo cual y es la raíz cuadrada de 200
z es la arista de un triángulo formado por dos diagonales y la arista que une las bases entonces, z al cuadrado=raíz cuadrada de 72+raiz cuadrada de 200 lo cual nos da la raíz cuadrada de 272
luego hallamos la h que es la altura
h al cuadrado+4 al cuadrado=z al cuadrado
esto nos da 16
luego hacemos la formula del trapecio que es base mayor más base menor partido por 2 por la altura, esto nos da 252cm cuadrados
   
Comentario a las respuestas:
Ana, Marcos, Ángela, Jorge y Mario responden correctamente. Antonio se explica de forma muy general, debería haber concretado más; se equivoca en el producto final y en sus unidades, que deben ser cuadradas por tratarse de un área. Manuel responde bien pero también se equivoca en la multiplicación final. Enhorabuena a todos.
En alguna respuesta adivino alguna ayuda externa, lo cual me parece bien siempre que contribuya a que finalmente entendáis el razonamiento que lleva a la solución y, como prueba de ello, seais capaces de explicarlo a los compañeros. Así que cada viernes dedicaremos un tiempo a que expongais ante la clase vuestra respuesta. 
Pronto, un nuevo problema.

miércoles, 9 de noviembre de 2011

Estafas piramidales: delitos con progresiones

Existe un conocido tipo de estafas llamado "piramidales" que se basa en el rápido crecimiento de las progresiones geométricas con razón mayor que la unidad. En esta escena de la serie Numbers, el matemático Charlie se lo explica a los agentes del FBI:
    

El protagonista dice que en la etapa número 19 del proceso, el estafador se había apoderado de 524.288 $. ¿Está bien calculado ese número?

Enlace para repasar la suma de los n primeros términos de una progresión geométrica

Este enlace procede de la misma web que el que días atrás nos ofreció Pablo:
http://www.juntadeandalucia.es/averroes/iesbajoguadalquivir/mat/cuartob/Sucesiones_progresiones/sucesion6.htm

martes, 8 de noviembre de 2011

Diario de clase

Hola, soy Iván.
Hoy hemos empezado corrigiendo los deberes de ayer mientras nos ``taladraban la cabeza´´(*). También el profesor nos ha explicado la suma de los términos de una progresión geométrica, y hemos hecho el ejercicio 6 de la página 76. Los deberes son:p.76: 7, 8, 9. p.80: 18.
(*) Iván se refiere a los taladros de los instaladores de las pizarras digitales. 
    
Para terminar, envío estas 2 fotos que encontré en internet y me parecieron graciosas: